
A Survey Report on Requirement Traceability of
Service Oriented Architecture

Saini Subhadarshini, Abhishek Ray

School of Computer Engineering

KIIT University, Bhubaneswar, India

Abstract-Requirements of the stakeholders keeps on changing
during the lifecycle of a software product development which
is almost inevitable. Requirement traceability provides
measures to identify the changes that happen during various
phases of the software lifecycle, like during requirements
analysis, coding, testing and the delivery of the product. In
this paper our aim is to study the current use of requirement
traceability in the context of service oriented architecture
(SOA) and to make a systematic review of various traceability
frameworks already available for SOA. Service oriented
architecture in recent years have been very widely adapted as
it bridges the gap between computer science and the business
world. The distributed nature of SOA combines many services
to make a system, so it is usually difficult to track the changes
of the different service artifacts at the development lifecycle.

Keywords: requirement traceability, service oriented
architecture, change analysis, service artifacts, system
development lifecycle.

I. INTRODUCTION
 The IEEE[1] define traceability as : “ The degree
to which a relationship can be established between two or
more products of the development process, especially
products having a predecessor–successor or master-
subordinate relationship to one another, for example, the
degree to which the requirements and design of given
software component match”. In other words requirement
traceability maps the relationship between various
components of a software system like requirements, design,
code implementation and delivery of a system. Traceability
is mainly accepted in software systems due to following
factors: (i) that traceability relates each requirement to its
design decisions, (ii) that it gives guidelines to the
designers about the current status of the development, to
trace and track the errors and to reconsider new designs
decisions on the making, (iii) to remove the communication
gap between the developer and the stakeholder and (iv) to
validate the customer about the products maps to
requirements.
 SOA: Service-oriented Architecture is a software
design pattern based on discrete pieces of software called
services, providing application functionality to other
applications. The services are combined to provide a
complete functionality to a software application. The major
characteristics [13] which makes SOA widely accepted are
that they are (i) loosely coupled i.e. dependency between
services is less, (ii) contractual i.e. services adhered to the
services agreement, (iii) autonomous and discoverable i.e.
services are self described so they can be easily found and

accessed , (iv) the services are reusable, (v) composable i.e.
they facilitate the assembly of composite services.
 Requirement traceability for SOA: Requirement
traceability for a software system is very much different
from traceability of a service oriented architecture reason
being (i) SOA is build comprising number of services.(ii)
A SOA is usually built and maintained over more than a
single system and finally, (iii) There may be many
stakeholders responsible for a single SOA. We can say that
SOA is a collective effort. So the relation between the
business world and software needs to be maintained
properly. There is always a probability of change in both
the business and software. Again any change initiated in
any of the both fields is a change for the SOA, as they are
closely related to each other. So an efficient traceability
mechanism is required to record these changes. At the
instance of a business process change or a software change
in the architecture, it must be immediately reflected in the
system. Thus traceability for service-oriented architecture
is a very challenging task. It is usually very difficult to
develop traceability links between various services artifacts
of a business. So there are many proposed frameworks
which makes the task of traceability over SOA easy. In this
study we will be reviewing some papers on traceability
frameworks over SOA.
 The rest of the papers is organized as follows :
section-II gives the review of literature survey and a brief
description of some papers of traceability over SOA.
Section-III gives discussion of importance advantages and
disadvantages of the traceability frameworks studied in
section-II. Finally conclusion and further work are
presented in section-IV.

II. LITERATURE REVIEW
 Requirement traceability is gaining a very fast
acceptance in the software development[2][3]. Many
researchers have been made on requirement traceability. Its
wide application on the development and maintenance of
various types of software make it very useful. But so far
there are a very few research on traceability applications on
service oriented architecture. In this section we would be
reviewing some major works on requirements traceability
of SOA.

M.A Hirzalla et al.[9] proposes an Intellitrace
framework. This intelligent framework acts across various
layers of the SOA based system. This framework analyses
the impact of changes of the service artifacts over the key
performance indicators (KPIs) using traceability links.

Saini Subhadarshini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3031-3033

www.ijcsit.com 3031

 The framework introduces service model which
gives all the external and internal information of SOA
based system. The Intellitracer tool used in the framework
can be a standalone tool or it can be integrated with any
commercially available tools. A trace is automatically
initiated. The SOA change listener initiates the trace by
analyzing different types of events with respect to the
changes made. The framework overseas small changes,
those that can be tolerated. Thus unnecessary actions can
easily be avoided. The change of events are quickly
analyzed from the dashboards provided by the tool and
automates the process of making decision in different
situations. This saves a lot of time and the quality of overall
situation handling is improved..
 S.Seedporf et al. [10] proposed a framework for
semantic traceability for service oriented architecture. The
key feature of the framework being that it can be
individually adjusted for supporting traceability in any
SOA environment. It uses web ontology language (OWL)
which is a formal language to define a semantically rich
SOA information model.
 The framework is divided into two layers, the
artifact layer and the knowledge layer. In the artifact layer
all artifacts are maintained by the stakeholders using their
own database or repository. No central repository is
available in the framework. The knowledge layer contains
an overall representation of the artifacts. This layer is
automatically created extracting information from the
artifacts layer, by the use of crawler, which is an extraction
tool. Here the traceability links can be automatically
generated or can be captured using extraction tool. It
supports Ontobrowser Tool[6] to navigate in the knowledge
base and ontology. We can say that STraS is a very flexible
and light weight approach which can be incorporated in any
SOA environment. It holds the stakeholders together by
providing tools for notification and reporting.
 P.Valaderas et al., 2008 [7] proposes a work for
traceability of requirements of model-driven development
of web applications. In this paper a model to model
transformation has been defined that allows requirements
traceability of navigational model from web application.
Web engineering methods OOWS allows the abstraction of
navigation model. Graph transformation techniques are
used for mapping requirement which is done by a AGG
tool. This mapping is automatically applied to the graph
transformations for developing a tool support. A tool called
TaskTracer is implemented in the framework. The
navigation model derived is analyzed by the tool. And a
HTML traceability report is generated that helps the
stakeholder to analyze how requirements are supported by
the conceptual elements. The information collected from
the traceability report helps to check the validity and
accuracy of the model to model transformation. This report
helps to analyze how the requirements are supported in the
navigation model, the effect of any change in requirement
of the system and the modeling of the requirement. An
ecommerce application is used to run on the task tracer
framework to check the validity of the system.
 N.Lungu et al., [8] in their paper focuses on the
development of a complete requirement traceability

solution system for housing the best traceability
methodologies and solutions which are based on web
service framework. The functionality of this system works
on 6 modules within the limitations of traceability of web
services. All the 6 modules of the system are independent
web services and the communication between them is done
through message passing mechanism. Thus a complete
traceability is achieved with the successful collaboration of
the web services. Here traceability is implemented as a
traceability tree where a Root node is there to maintain the
structure. A parent-child relation is developed which makes
the user easy to manage the requirements. Testing is done
on individual modules to check the validity of the system.
Many commercially available tools are also well described
in the paper.

III. DISCUSSION
 In paper [9,10] the authors have proposed some
very extensive frameworks for traceability of service
oriented architecture. There are meta models considered to
convenient the process. The traceability done is either
through the tool proposed or can be done through any
commercially available tool. In paper [10] a framework is
discussed to generate a traceability report of model-to-
model transformation of web applications. Here the
transformation are made by the AGG tool and trace links
are automatically generated. In [8] the service oriented
system is divided into some modules and each module acts
as an individual and independent web service. The
collaboration of these web services helps for the generation
of traceability.
 The major disadvantage that we came across all
the papers studied is that the service artifacts considered for
traceability does not comply the whole SOA. So probably
the whole architecture is not available for traceability.
Again the service modules given as input are not very well
described and clear in the studied frameworks. In some
papers the traceability tool used are commercially available
tools that are available in the market. There is a flexibility
in choosing the tools. Most of them are extraction tools
rather than verification tools.
 Some major advantages being that the
characteristics of a SOA based system like flexibility, loose
coupling, reusability, interoperability helps to apply
traceability easily on it. Again traceability is vital for a
SOA based system in order to record the frequent changes
of the multiple services of the system.

IV. CONCLUSION
 Thus from the above study it is clear that there are
both advantages and disadvantages in applying
requirements traceability to a service oriented system. The
currently available traceability frameworks lack focus on
incorporating the complete service-oriented architecture so
it is difficult to generate a successful traceability of the
system. Again due to the lack of automated support for
generating and maintaining trace links between service
artifacts makes it very time taking and tedious task.
 So in future we would like to implement a
traceability framework which deals both technically and

Saini Subhadarshini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3031-3033

www.ijcsit.com 3032

systematically with the service oriented architecture for
performing traceability. It should accept the service
artifacts of any business format specified and analyze the
changes in the system through traceability measures and
then implement the changes back to the system, rectifying
all the changes made.

REFERENCES
[1] IEEE standard glossary of Software Engineering Terminology,

IEEE Std. 610.1990, 1990, p1.
[2] B.Ramesh and M.Jarke, “Toward Reference Models for

Requirements Traceability" , IEEE Transactions on Software
Engineering, vol.27, no1, pp- 58-93, 2001.

[3] V Lieno, "Documenting Requirements Traceability Information: A
Case Study", Helsinki University of Technology , 2001

[4] M Hokkanen , "Requirement Traceability", Lapperenrate
University of Technology, 2001.

[5] O.C.Z. Gotel and C.Finkelstein,"An analysis of the Requirement
Traceability Problem", Proceedings of the First International
Conference on Requirement Engineering, pp 94-101, April 1994.

[6] H.J.Happel and S.Seedof, “Ontobrowser : A Semantic wiki for
sharing knowledge about Software Architectures", Proceedings of
the 19th International Conference on Software Engineering and
Knowledge Engineering (SEKE), Boston, USA 2007, pp. 506-512.

[7] P Valderas and V Pelechano, "Introducing Requirement
Traceability support in Model-driven Development of Web
Applications", Journal Information and Software Technology 51,
pg 749-768, April 2009.

[8] Ntheye Lungu and Fadzai Muvuti, "Service-oriented Architecture
for Software Traceability System".

[9] M.A Hirizala, A Zisman and J Cland Huang, “Using Traceabilty to
Support SOA Impact Analysis", IEEE World Congress on Services,
pg 145-151, 2011.

[10] S Seedorf,, K Nordheimer and S Krug, "STraS a Framework for
Semantic Traceability in Enterprise-wide SOA Lifecycle
Management", pg 212-219, IEEE 2009.

[11] B.Ramesh and E.Edwards, “Issues in the Development of
Requirement Traceability model”, IEEE 1990

[12] http://en.wikipedia.org/wiki/Service-oriented_architecture

Saini Subhadarshini et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3031-3033

www.ijcsit.com 3033

